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1 SUPPLEMENTARY TABLES

Table 1. Average PLSC and PLSC-RP weights for high-dimensional neuroimaging data

The table shows average PLSC weights and average PLSC-RP weights for causal voxels and causal SNPs as
compared to non-causal voxels and non-causal SNPs. Causal voxels and causal SNPs receive higher weights than
non-causal voxels and SNPs. Average weights are very similar for PLSC and PLSC-RP.

dimensionality PLS analysis |wwmry| for |wmri| for |wsnp| for |wsnp| for
of MRI data causal voxels non-causal voxels causal SNPs non-causal SNPs
1.000 PLSC 0.0503 0.0256 0.3395 0.0976
’ PLSC-RP 0.0506 0.0255 0.3314 0.0995
10.000 PLSC 0.0152 0.0078 0.3863 0.0901
’ PLSC-RP 0.0152 0.0078 0.3710 0.0911
20.000 PLSC 0.0116 0.0054 0.3440 0.0934
’ PLSC-RP 0.0114 0.0055 0.3266 0.0919
30.000 PLSC 0.0104 0.0044 0.3877 0.0881
’ PLSC-RP 0.0104 0.0045 0.3856 0.0898
40.000 PLSC 0.0089 0.0041 0.3663 0.0928
’ PLSC-RP 0.0086 0.0041 0.3533 0.0937
50.000 PLSC 0.0084 0.0039 0.3143 0.0993
’ PLSC-RP 0.0086 0.0039 0.3123 0.1019
70.000 PLSC 0.0061 0.0033 0.3325 0.1005
’ PLSC-RP 0.0058 0.0034 0.3226 0.0973
90,000 PLSC 0.0058 0.0029 0.2873 0.1074

PLSC-RP 0.0057 0.0029 0.2772 0.1091
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Table 2. Average PLSC and PLSC-RP weights for the fMRI face-matching task

Average weights for causal and non-causal voxels and SNPs are very similar for PLSC and PLSC-RP.

PLS analysis |wwmri| for causal voxels |wwmri| for non-causal voxels |wsnp| for causal SNPs  |wgnp| for non-causal SNPs

PLSC 0.0059 0.0017 0.5768 0.0296
PLSC-RP 0.0059 0.0017 0.5757 0.0467

Table 3. Average SNP weights for PLSC and PLSC-RP in the Sorbs
The table shows average PLSC weights and average PLSC-RP weights for causal and non-causal SNPs. In addition,
it is illustrated how serum vaspin and body height are weighted in the first component of the phenotype weight

profile.
PLS analysis  |[Wvaspin| |WHeight| |Wsnp| for causal SNPs  |wsnp| for non-causal SNPs
PLSC 0.7068  0.0285 0.0093 0.0013
PLSC-RP 0.7068  0.0294 0.0093 0.0013

Table 4. Average PLSC and PLSC-RP weights for high-dimensional neuroimaging and high-dimensional
SNP data

Causal voxels and causal SNPs receive higher weights than non-causal voxels and SNPs. Average weights are very
similar for PLSC and PLSC-RP.

dim. of dim. of PLS analysis |wmri| for |wmri| for |wsnp| for |wsnp| for

MRI data SNP data causal voxels non-causal voxels causal SNPs non-causal SNPs
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2 SUPPLEMENTARY EQUATIONS
PLSC-RP for dimensionality reduction in X; OR X»

For traditional PLSC, SVD is used to decompose the cross-product matrix A of X3 and X2, which
are both standardized column-wise, into three matrices:

cov(X1, Xa) = A = X, X2 = W1 SW,, (1)

Assumed that X is high-dimensional, RP transforms X; to a lower dimensional space via the following

transformation:
Xigp = X1+ R, (2)

where R is a random matrix and X, is the low-dimensional subspace of X with desired lower dimen-
sion k. If we perform PLSC to decompose the cross-product matrix of X1, and X2, we obtain the weights
W, for data set X2, but weights W7, for the reduced data set X1,. To transform the weights W1, back
to the original space, that is W7, we rearrange the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation
cov(X1, X2) = A = X, Xo = W1SW,,
If we extend both sides of the equation by ws,, we obtain
A - wa, = W1SW, - wa,.
Since W3 is column-wise orthogonal, we have

A-ws, = w1, S{Wy - W2,

Rearranging yields

1 ’
;-A-wzi:wli-wzi-'wgi.
7

Since the L2-norm for a vector a is given by

|a|:\/a%—i—a§+...+a%,

lal>=a? + a2+ ...+ a2,

we obtain the weights wy,;,7 = 1,...,p, p = min(k, d2), as follows:
1
Wy, = ———— - A wa,. 3)
Si |w2z|
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PLSC-RP for dimensionality reduction in X; AND X»

Assumed that both X7 and X2 are high-dimensional, RP transforms X7 and X2 to lower dimensional
spaces via the following transformation:

Xigp = X1+ Ry,

4)
X2, = X2+ Ra.

If we perform PLSC to decompose the cross-product matrix of X1, and Xg,,, we obtain weights Wy,
and Wy, for the low dimensional subspaces. To transform the weights W7y, back to the original space
W1, we rearrange the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation
/
cov(X1, Xogp) = WlSWzRP-
If we extend both sides of the equation by ws, , we obtain
K3
/
COV(Xl, XzRP) . szPi = W15W2RP . szPi'
Since Wa,, is column-wise orthogonal, we have
’

cov(Xq, Xog,) - Wagp, = W1;8i Wy, * Wy, -

Rearranging yields

1 ’
o cov(Xq, Xog) - Wagp, = W1, W, W2,
7

Thus, for the weights wq,,7=1,...,p, p = min(ky, k2), we obtain

1
wq, = ——— = * COV X X - w . 5
1; s; - ’w2RPi ‘2 ( 1, 2RP) 2RP7', ( )

Following the same logic, the weights Wa,,, are transformed back to the original space W3 by rearranging
the equation for the SVD as follows:

Starting point for the rearrangement: the PLSC equation
coV(X1pp, X2) = Wiy SW,.

If we extend both sides of the equation by wllRP. , We obtain

’ ’ ’
wlRP~ : COV(XlRP, Xz) = wlRP- : W1RPSW2-
k2 K2
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Since Wy, is column-wise orthogonal, we have
’
Wy, -cov(Xigp, X2) = Wy, Wigp, * 5i " Wa,.

Rearranging yields

1

_.w

’
s Ulre; - CoV(Xgp, X2) = Wigp, " Wik, * W,

Thus, for the weights wo,, i = 1,...,p, p = min(k1, k2), we obtain

(6)

Frontiers 5



	Supplementary Tables
	Supplementary Equations

